Windows Server 2019

How to backup a Windows 2019 file server cluster

A cluster ensures high availability but does not protect against accidental data loss. For example, if a user (or malware) deletes a file from a Microsoft Windows file server cluster, you want to be able to restore that data. So, backup for data on clusters is still necessary. But also, it can save much time for the Windows operating system to have a full backup. Imagine that one of the cluster member servers has a hardware issue and needs to be replaced. You could manually install Windows, install all updates, install all the drivers, join the cluster again and then remove the old cluster member, or you could simply do a bare metal restore with Veeam Agent for Microsoft Windows.

Backup and restore of physical Windows clusters is supported by Veeam Backup & Replication with Veeam Agent for Microsoft Windows. It can backup Windows clusters with shared disks (e.g., a classic file-server cluster) or shared nothing clusters like Microsoft Exchange DAG or SQL Always-On clusters. In this article I will show how to backup a file server cluster with a shared disk. Earlier blog post ( How to create a file server cluster with Windows 2019) show the setup of the system.

The backup of a cluster requires three steps:

  1. Creating a protection group
  2. Creating a backup job
  3. Starting the backup job

Create a protection group

A Veeam Backup & Replication protection group is a logical unit to group multiple machines to one logical unit. But it’s not only used for grouping, it manages the agent deployment to the computers. Go to the inventory and select “physical and cloud infrastructure” to create a new protection group. After defining a name, you need to choose the type “Microsoft Active Directory objects”.

In the next step, select the cluster object. In my case, it’s “WFC2019”

Only add the Active Directory cluster here. You don’t need to add the nodes here. You can also find the cluster object in Active Directory Users and Computers

As I run my cluster as a virtual machine (VM), I do not want to exclude VMs from processing.

In the next step, you must specify a user that has local administrator privileges. In my lab I simplified everything by using the domain administrator

It is always a good idea to test the credentials. This ensures that no problems (e.g., firewall issues) occur during agent deployment.

The options page is more interesting. Veeam regularly scans for changes and then deploys or updates the agent automatically.

The distribution server is the machine that deploys the agents. In most cases, the backup server is also fine as distribution server. Reasons for dedicated distribution servers would be if you have branch office deployments or when you plan to deploy a hundred or more agents.

On large servers we recommend installing the change block tracking driver for better incremental backup performance. Keep in mind that the driver requires a reboot during installation and updates.

In the advanced settings, you can find a setting that is particularly relevant from a performance perspective: Backup I/O control. It throttles the agent if the server has too high of a load.

You can reboot directly from the Veeam Backup & Replication console.

After the installation has succeeded and no reboots are pending anymore, the rescan shows that everything’s okay.

Create a backup job

The second step is to create a backup job. Just go to the jobs section in “home” and select to create a new backup job for a Windows computer. At the first step, select the type “failover cluster”.

Give a name to the backup job and add the protection group created earlier.

I want to back up everything (e.g., the entire computer)

Then, select how long you want to store the backups and where you want to store them. The next section, “guest processing,” is more interesting. Veeam Agent for Microsoft Windows always does backups based on VSS snapshots. That means that the backup is always consistent from a file-level perspective. For application servers (e.g., SQL, Microsoft Exchange) you might want to configure log shipping settings. For this simple file-server example no additional configuration is needed.

Finally, you can configure a backup schedule.

Run the backup job

Running a Veeam Agent for Microsoft Windows backup job is the same as a classic VM backup job. The only thing you might notice is that a cluster backup does not use per-host-backup-chains if you configured your repository to “per-VM backup files”.  All the data from the cluster members of one job is stored in one backup chain.

Another thing to note is that the failover of a cluster does not result in a new full backup. There is not even a change-block-tracking reset (e.g., CBT-reset) in most failover situations. A failover cluster backup always does block-level backup (e.g., image-level backup). Of course, you can do single-item or file-level restore from block level backups.

During the backup, Veeam will also collect the recovery media data. This data is required for a bare-metal or full-cluster restore.

Next steps and restore

After a successful backup, you can do restores. The user interface offers all the options that are available for Veeam Agent for Microsoft Windows restores. In most cases, the restores will be file-level or application restores. For Windows failover clusters, the restore of Microsoft Exchange and SQL is possible (and is not shown in the screenshot because it’s a file server). For non-clustered systems, there are additional options for Microsoft Active Directory, SharePoint and Oracle databases.

Download Veeam Agent for Microsoft Windows below and give this flow a try.


This article was provided by our service partner : veeam.com

veeam office 365

How to manage Office 365 backup data with Veeam

As companies grow, data grows and so does the backup data. Managing data is always an important aspect of the business. A common question we get around Veeam Backup for Microsoft Office 365 is how to manage the backup data in case something changes. Data management can be needed for several reasons:

  • Migration to new backup storage
  • Modification of backup jobs
  • Removal of data related to a former employee

Within Veeam Backup for Microsoft Office 365, we can easily perform these tasks via PowerShell. Let’s take a closer look at how this works exactly.

Moving data between repositories

Whether you need to move data because you bought new storage or because of a change in company policy, from time to time it will occur. We can move backup data by leveraging Move-VBOEntityData. This will move the organization entity data from one repository to another and can move the following types of data:

  • User data
  • Group data
  • Organization site data

The first two are related to Exchange and OneDrive for Business data, where the last option is related to SharePoint online data. Each of these types also supports four additional data types such as Mailbox, ArchiveMailbox, OneDrive and Sites.

If we want to move data, we need three parameters, by default, to perform the move:

  • Source repository
  • Target repository
  • Type of data

The example below will move all the data related to a specific user account:

$source = Get-VBORepository -Name “sourceRepo”
$target = Get-VBORepository -Name “targetRepo”
$user = Get-VBOEntityData -Type User -Repository $source -Name “Niels Engelen”

Move-VBOEntityData -From $source -To $target -User $user -Confirm:$false

The result of the move can be seen within the history tab in the console. As seen on the screenshot, all the data is being moved to the target repository. However, it is possible to adjust this and only move, for example, mailbox and archive mailbox data.

Move-VBOEntityData -From $source -To $target -User $user -Mailbox -ArchiveMailbox-Confirm:$false

As seen on the screenshot, this will only move the two specific data types and leave the OneDrive for Business and personal SharePoint site on the source repository.

Deleting data from repositories

We went over moving data between repositories, but what if somebody leaves the company and the data related to their account has to be removed? Again, we can leverage PowerShell to easily perform this task by using Remove-VBOEntityData.

The same algorithm applies here. We can remove three types of data, with the option to drill down to a specific data type (Mailbox, ArchiveMailbox, OneDrive, Sites):

  • User data
  • Group data
  • Organization site data

If we want to remove data from a specific user, we can use the following snippet:

$repository = Get-VBORepository -Name “repository”
$user = Get-VBOEntityData -Type User -Repository $ repository -Name “Niels Engelen”

Remove-VBOEntityData -Repository $repository -User $user -Confirm:$false 

The same applies here. You can choose not to add an extra parameter and it will remove everything related to the account. However, it is also possible to provide extra options. If you only want to remove OneDrive for Business data, you can do this by using the following:

Remove-VBOEntityData -Repository $repository -User $user -OneDrive-Confirm:$false


This article was provided by our service partner : veeam

Endpoint Security

Why MSPs Should Expect No-Conflict Endpoint Security

“Antivirus programs use techniques to stop viruses that are very “virus-like” in and of themselves, and in most cases if you try to run two antivirus programs, or full endpoint security suites, each believes the other is malicious and they then engage in a battle to the death (of system usability, anyway).”

“…running 2 AV’s will most likely cause conflicts and slowness as they will scan each other’s malware signature database. So it’s not recommended.”

The above quotes come from top answers on a popular computer help site and community forum in response to a question about “Running Two AVs” simultaneously.

Seattle Times tech columnist Patrick Marshall has similarly warned his readers about the dangers of antivirus products conflicting on his own computers.

Historically, these comments were spot-on, 100% correct in describing how competing Endpoint Security solutions interacted on endpoints. Here’s why.

The (Traditional) Issues with Running Side-by-Side AV Programs

In pursuit of battling it out on your machine for security supremacy, AV solutions have traditionally had a tendency to cause serious performance issues.

This is because:

  • Each is convinced the other is an imposter. Antivirus programs tend to look a lot like viruses to other antivirus programs. The behaviors they engage in, like scanning files or scripts and exporting information about those data objects, can look a little shady to a program that’s sole purpose is to be on the lookout for suspicious activity.
  • Each wants to be the anti-malware star. Ideally both AV programs installed on a machine would be up to the task of spotting a virus on a computer. And both would want to let the user know when they’d found something. So while one AV number one may isolate a threat, you can bet AV number two will still want to alert the user to its presence. This can lead to an endlessly annoying cycle of warnings, all-clears, and further warnings.
  • Both are hungry for your computer’s limited resources. Traditional antivirus products store static lists of known threats on each user’s machine so they can be checked against new data. This, plus the memory used for storing the endpoint agent, CPU for scheduled scans, on-demand scans, and even resource use during idling can add up to big demand. Multiply it by two and devices quickly become sluggish.

Putting the Problem Into Context

Those of you reading this may be thinking, But is all of this really a problem? Who wants to run duplicate endpoint security products anyway?

Consider a scenario, one in which you’re unhappy with your current AV solution. Maybe the management overhead is unreasonable and it’s keeping you from core business responsibilities. Then what?

“Rip and replace”—a phrase guaranteed to make many an MSP shudder—comes to mind. It suggests long evenings of after-hours work removing endpoint protection from device after device, exposing each of the machines under your care to a precarious period of no protection. For MSPs managing hundreds or thousands of endpoints, even significant performance issues can seem not worth the trouble.

Hence we’ve arrived at the problem with conflicting AV software. They lock MSPs into a no-win quagmire of poor performance on the one hand, and a potentially dangerous rip-and-replace operation on the other.

But by designing a no-conflict agent, these growing pains can be eased almost completely. MSPs unhappy with the performance of their current AV can install its replacement during working hours without breaking a sweat. A cloud-based malware prevention architecture and “next-gen” approach to mitigating attacks allows everyone to benefit from the ability to change and upgrade their endpoint security with minimal effort.

Simply wait for your new endpoint agent to be installed, uninstall its predecessor, and still be home in time for dinner.

Stop Wishing and Expect No-Conflict Endpoint Protection

Any modern endpoint protection worth its salt or designed with the user in mind has two key qualities that address this problem:

  1. It won’t conflict with other AV programs and
  2. It installs fast and painlessly.

After all, this is 2019 (and over 30 years since antivirus was invented) so you should expect as much. Considering the plethora of (often so-called) next-gen endpoint solutions out there, there’s just no reason to get locked into a bad relationship you can’t easily replace if something better comes along.

So when evaluating a new cybersecurity tool, ask whether it’s no conflict and how quickly it installs. You’ll be glad you did.


This article was provided by our service partner : webroot.com

How to create a file server cluster with Windows 2019

High Availability of data and applications has been an important topic in IT for decades. One of the critical services in many companies is the file servers, which serve file shares where users or applications store their data. If the file server is offline, then people cannot work. Downtime means additional costs, which organizations try to avoid. Windows Server 2019 (and earlier versions) allow you to create highly available file services.

Prerequisites

Before we can start with the file server cluster configuration, the file server role must be installed and permissions must be set in Active Directory for the failover cluster computer object.

There are two ways to install the file server role on the two cluster nodes:

  • Via the Add Roles and Features Wizard of the server manager
  • Via PowerShell

In Server manager, click Add roles and features and follow the wizard. Select the File Server role and install it. A reboot is not required.

server 2019 cluster 1

As an alternative, you can use the following PowerShell command to install the file server feature:

Install-WindowsFeature -Name FS-FileServer

server 2019 cluster 2

To avoid errors at later steps, first configure Active Directory permissions for the failover cluster computer object. The computer object of the cluster (in my case, WFC2019) must have the Create Computer Objects permissions in the Active Directory Organizational Unit (OU).

If you forget about this, the role will fail to start later. Errors and event IDs 1069, 1205 and 1254 will show up in the Windows event log and failover cluster manager.

Open the Active Directory Users and Computers console and switch to Advanced Features in the View menu.

server 2019 cluster 3

Go the OU where your cluster object is located (in my case the OU is Blog). Go to the Security tab (in properties) and click Advanced.

server 2019 cluster 4

In the new window click Add and select your cluster computer object as principal (in my case WFC2019).

server 2019 cluster 5

In the Permissions list select Create Computer objects

server 2019 cluster 6

Click OK in all windows to confirm everything

Configure the file server cluster role

Because all pre-requisites are now met, we can configure the file server cluster role. Open the Failover Cluster manager and add the role to your cluster (right-click on Roles of your cluster -> configure role -> and select the File Server role).

server 2019 cluster 7

We will create a file server for general use as we plan to host file shares for end users.

server 2019 cluster 8

In the next step we define how clients can access the file server cluster. Select a name for your file server and assign an additional IP address.

server 2019 cluster 9

Use the storage configured earlier.

server 2019 cluster 10

After you finish the wizard, you can see the File Server role up and running in the Failover Cluster Manager. If you see errors here, check the create computer objects permissions described earlier.

server 2019 cluster 10

A new Active Directory object also appears in Active Directory Users and Computers, including a new DNS entry

server 2019 cluster 11

Now it’s time to create file shares for users. You can right-click on the file server role or use the actions panel on the right hand side.

server 2019 cluster 12

I select the SMB Share  Quick as I plan a general purpose file server for end users.

server 2019 cluster 13

I also keep the default permissions because this is just an example. After you have finished the wizard, the new file share is ready to use.

In the following video I show the advances of a continuous available file share. The upload of the file will continue even during a cluster failover. The client is a Windows 10 1809. I upload an iso to the file share I created earlier. My upload speed it about 10-20Mbit/s WAN connection. During failover to a different cluster node, the upload stops for some seconds. After successful failover it continues uploading the ISO file.

Next steps and backup

As soon as the file server contains data, it is also time to think about backing up the file server. Veeam Agent for Microsoft Windows can back up Windows failover clusters with shared disks. We also recommend doing backups of the entire system of the cluster. This also backs up the operating systems of the cluster members and helps to speed up restore of a failed cluster node because you don’t need to search for drivers, etc. in case of a restore.


This article was provided by our service partner : Veeam

smishing

Smishing Explained: What It Is and How You Can Prevent It

Do you remember the last time you’ve interacted with a brand, political cause, or fundraising campaign via text message? Have you noticed these communications occurring more frequently as of late?

It’s no accident. Whereas marketers and communications professionals can’t count on email opens or users accepting push notifications from apps, they’re well aware that around 98% of SMS messages are read within seconds of being received

As with any development in how we communicate, the rise in brand-related text messaging has attracted scammers looking to profit. Hence we arrive at a funny new word in the cybersecurity lexicon, “smishing.” Mathematical minds might understand it better represented by the following equation:

SMS + Phishing = Smishing

For the rest of us, smishing is the act of using text messages to trick individuals into divulging sensitive information, visiting a risky site, or downloading a malicious app onto a smartphone. These often benign seeming messages might ask you to confirm banking details, verify account information, or subscribe to an email newsletter via a link delivered by SMS.

As with phishing emails, the end goal is to trick a user into an action that plays into the hands of cybercriminals. Shockingly, smishing campaigns often closely follow natural disasters as scammers try to prey on the charitable to divert funds into their own pockets.

Smishing vs Vishing vs Phishing

If you’re at all concerned with the latest techniques cybercriminals are using to defraud their victims, your vocabulary may be running over with terms for the newest tactics. Here’s a brief refresher to help keep them straight.

  • Smishing, as described above, uses text messages to extract the sought after information. Different smishing techniques are discussed below.
  • Vishing is when a fraudulent actor calls a victim pretending to be from a reputable organization and tries to extract personal information, such as banking or credit card information.
  • Phishing is any type of social engineering attack aimed at getting a victim to voluntarily turn over valuable information by pretending to be a legitimate source. Both smishing and vishing are variations of this tactic.

Examples of Smishing Techniques

Enterprising scammers have devised a number of methods for smishing smartphone users. Here are a few popular techniques to be aware of:

  • Sending a link that triggers the downloading of a malicious app. Clicks can trigger automatic downloads on smartphones the same way they can on desktop internet browsers. In smishing campaigns, these apps are often designed to track your keystrokes, steal your identity, cede control of your phone to hackers, or encrypt the files on your phone and hold them for ransom.
  • Linking to information-capturing forms. In the same way many email phishing campaigns aim to direct their victims to online forms where their information can be stolen, this technique uses text messages to do the same. Once a user has clicked on the link and been redirected, any information entered into the form can be read and misused by scammers.
  • Targeting users with personal information. In a variation of spear phishing, committed smishers may research a user’s social media activity in order to entice their target with highly personalized bait text messages. The end goal is the same as any phishing attack, but it’s important to know that these scammers do sometimes come armed with your personal information to give their ruse a real feel.
  • Referrals to tech support. Again, this technique is a variation on the classic tech support scam, or it could be thought of as the “vish via smish.” An SMS message will instruct the recipient to contact a customer support line via a number that’s provided. Once on the line, the scammer will try to pry information from the caller by pretending to be a legitimate customer service representative. 

How to Prevent Smishing

For all the conveniences technology has bestowed upon us, it’s also opened us up to more ways to be ripped off. But if a text message from an unknown number promising to rid you of mortgage debt (but only if you act fast) raises your suspicion, then you’re already on the right track to avoiding falling for smishing.

Here are a few other best practices for frustrating these attacks:

  • Look for all the same signs you would if you were concerned an email was a phishing attempt: 1) Check for spelling errors and grammar mistakes, 2) Visit the sender’s website itself rather than providing information in the message, and 3) Verify the sender’s telephone address to make sure it matches that of the company it purports to belong to.
  • Never provide financial or payment information on anything other than the trusted website itself.
  • Don’t click on links from unknown senders or those you do not trust
  • Be wary of “act fast,” “sign up now,” or other pushy and too-good-to-be-true offers.
  • Always type web addresses in a browser rather than clicking on the link.
  • Install a mobile-compatible antivirus on your smart devices.

This article was provided by our service partner : webroot.com